#vacuumtech

Working principles of a turbomolecular pump

Turbomolecular pumps are found in every semiconductor fab, the vast majority of helium leak detectors and research laboratories. Yet most never give them much thought, one simply roughs out the vacuum chamber and spin them up. In a few minutes, your chamber is in the high vacuum range.

Today I want to introduce to you the working principles of these pumps. First is a video that shows how a Pfeiffer HiPace 2300 moves gas molecules from the chamber to the exhaust port of the turbomolecular pump. As you watch gas flow through the pump in the video, get the idea that the pumping principle is to increase the probability that the gas molecules will be impelled by the rotor (the spinning blades) into the stator (stationary) blades towards higher concentrations of gas. Pumping is achieved by directing the gas molecules from the low pressure inlet to the higher pressure exhaust port.

Turbomolecular pumps do not have liquid or contact seals. The rotor blades are typically spinning a few tenths of a millimeter from the envelop of the pump and the rotor shaft is a few tents of a millimeter from the stator blades. These gaps are necessary for the operation of the pump, however they do allow a small fraction of the gas to backstream (flow backwards, if you will) through the pump. This is one of the reasons that turbomolecular pumps must have a mechanical pump providing a rough vacuum pressure on the exhaust port. In other words, the turbomolecular pump cannot provide sufficient compression to move gas to atmospheric pressures and they need to be “backed” by a roughing pump.

The video below was produced by Agilent. It shows how a typical turbomolecular pump is built.

I hope this gives you some basic understandings of turbomolecular pumps. Understanding Modern Vacuum Technology has a section devoted to turbomolecular pumps. It covers the development of the pumping principles, the operation and safety considerations when implementing turbomolecular pumps. UMVT  is available for $59 at Amazon.com. You will find information UMVT that is not available in any other book to date.

Get an Intuitive Feel for Gas Properties with this Simulator

Today I want to bring attention to the PhET Gas Properties Simulator. This is a wonderful tool that allows a learner to interact with all of the levers in a gas system. The tool is set up so that the learner can add gas particles into a chamber and then see the results as the system’s parameters (temperature, volume, etc.) are changed.

In the figure below, I introduced equal amounts of a heavy gas and a light gas (60 of each) and then opened the lid on the top of the chamber a bit to see what happens. After letting the simulation run for a short while I could see that the light gas was escaping faster than the heavier gas, the temperature was dropping in the system along with the pressure.

Capture PhET1.PNG

60 heavy gas molecules and 60 light gas molecules were introduced into the chamber. The lid was cracked open and gas was allowed to escape. At the time of the screen shot, 55 heavy gas molecules and 50 light molecules remained in the chamber.

There are also some graphs that give insight of the molecular speeds and energies of the molecules. Lessons and exercises are available on the PhET website.

As a vacuum technologist, I think in terms of molecular flow where the molecules interact with the walls of a conduit rather than collide with each other. When opening the lid to allow that gas to expand out into space, it occurred to me that this is also a good tool to help convey the idea that in order for a pump to remove a gas molecule from a chamber, the molecule has to enter the pump’s inlet. Since the lid has a variable aperture, it can be use to introduce the concept of how a high vacuum pump’s pump speed is dependent on the inlet diameter .

The Gas Properties Simulator is suitable for high school, college, and continuing education students. I have loaded it onto my work laptop and will be using this in my corporate vacuum lectures in the future. I hope you will find it useful too.

Understanding Modern Vacuum Technology discusses the gas properties that can be explored with this simulator. UMVT also discusses vacuum pumps and pressure measurement.