Weather Prediction Satellites and Vacuum Technology

Unless you are in the aerospace industry, you may not put any attention on the dependency of satellites and vacuum technology. Many space-level processes include vacuum leak detection, vacuum insulated containers, research experiments with vacuum chambers and space simulation chambers just to name a few.


In March, 2017, GOES-S was placed in a thermal vacuum chamber to test its ability to function in the cold of space in its 22,3000 mile orbit above Earth. The chamber is located at Lockheed Martin Space Systems, Denver, Colorado. GOES-S waas in the thermal vacuum chamber for 45 days. Photo courtesy of NASA.Gov.

Space simulation chambers are used to test instruments in conditions here on earth that will approximate the conditions in space. Out of Earth’s atmosphere, the temperatures can go from extreme cold to hot.

Another important use of vacuum systems is to help “clean” materials and hardware by extracting compounds via vacuum outgassing. This is done so that the materials are not released in space where they may contaminate sensitive equipment.

Cooling a complex piece of equipment, such as the GOES-S satellite, in atmosphere will result in condensation and damage to the instrument. However a satellite must be tested prior to launching it into orbit. Placing the instrument in a vacuum chamber and cooling to cryogenic temperatures is a must. Components shrink as the assembly cool. Therefore it is important to verify that critical alignments can be kept and the mechanical hardware will function as intended.

The most complicated and challenging test are in thermal vacuum chamber where a satellite experiences four cycles of extreme cold to extreme heat. In order to simulate the environment of space, the chamber is cooled to below minus 100 degrees Celsius or minus 148 degrees Fahrenheit.

This test simulated the temperature changes GOES-S will encounter in space, as well as worst case scenarios of whether the instruments can come back to life in case of a shut down that exposes them to even colder temperatures.


So the next time you look at a satellite weather image, you will know that it was made possible with the help of many vacuum engineers.

The Webb Space Telescope Finishes Cryogenic Testing

Vacuum chambers come in many shapes and sizes, from small, hermitically sealed microelectronics to huge space systems test chambers to the 4km long LIGO chambers. On December 1st, the James Webb Space Telescope emerged from the large Chamber A test facility at Johnson Space Center, which is a great piece of vacuum technology.

Webb inside Chamber A 38544426831_7ba4e21f98_b.jpg

NASA’s James Webb Space Telescope sits inside Chamber A at NASA’s Johnson Space Center in Houston after having completed its cryogenic testing on Nov. 18, 2017. This marked the telescope’s final cryogenic testing, and it ensured the observatory is ready for the frigid, airless environment of space. Credits: NASA/Chris Gunn

The James Webb Space Telescope will be a large infrared telescope with a 6.5m primary mirror. The scheduled launch date is in the spring of 2019. It will be lifted on an Arian 5 rocket from French Guiana.

Before a space instrument is put into service, it must be rigorously tested in a space simulation chamber. NASA’s Johnson Space Center’s Chamber A was prepared. The vault-like, 40-foot diameter, 40-ton door was sealed shut on July 10, 2017, beginning the scheduled 100 days of cryogenic testing for NASA’s James Webb Space Telescope in Houston.

There are two important reasons that Webb needs to be tested in a space simulation chamber. First is that the telescope will be operating in a far orbit at cryogenic temperatures. Webb was designed so that the instrument will come to thermal and mechanical stability to known dimensions in the cold of deep space. Secondly, the infrared equipment must be tested in a cryogenic chamber because objects at room temperature emit infrared energy that would swamp the instruments, so putting the space telescope in a cryogenic chamber all but eliminates background infrared energy.


Engineers watch as Chamber A’s colossal door closes at NASA’s Johnson Space Center in Houston.
Credits: NASA/Chris Gunn

The chamber evacuation sequence started on July 20, 2017. Engineers began to bring the chamber, the telescope and its science instruments down to cryogenic temperatures a process that took about 30 days. The cold gaseous helium shroud inside Chamber A is the innermost of two shrouds used to cool the Webb telescope down to the temperatures at which it will operate while in orbit. This shroud sits inside an outer liquid nitrogen shroud.  During cool down, Webb and its instruments transferred their heat to surrounding cold gaseous helium and liquid nitrogen shrouds. Liquid nitrogen reaches 77 Kelvin (minus 321 degrees Fahrenheit/minus 196 degrees Celsius), while the cold gaseous helium in the shroud gets as low as 11 Kelvin (minus 440 Fahrenheit/minus 262 Celsius).

Webb remained at “cryo-stable” temperatures for about another 30 days. The thermal sensors kept track of the temperature of the telescope, while the specialized camera systems monitored the physical position of Webb’s components as they moved during the cool down process. These tests included an important alignment check of Webb’s 18 primary mirror segments, to make sure all of the gold-plated, hexagonal segments acted like a single, monolithic mirror. This was the first time the telescope’s optics and its instruments were tested together, though the instruments had previously undergone cryogenic testing in a smaller chamber at Goddard.


NASA’s James Webb Space Telescope cools to cryogenic temperatures by radiating heat through the surrounding vacuum, to the liquid nitrogen and cold gaseous helium shrouds. The outside dimensions of Chamber A are 19.8m (65ft) in diameter and 33.6m (120ft) in height. The chamber is equipped with staged roughing pumps, valved turbo molecular and cryo absorption pumps, and 20 K (-424 oF) helium refrigeration units. The high vacuum pumps speeds are rated at 2 x 107 liters/sec condensibles and 3 x 105 liters/sec noncondensables at 1 x 10-6 torr pressure.


Systems testing continued and on Sept. 27, the engineers began to warm the chamber back to near room temperature, before pumping the air back into it and unsealing the door. This was done slowly and on the 18th of November, the chamber door was unsealed.

LIGO Vacuum Systems and Gravitational Waves

LIGO is an acronym for Laser Interferometer Gravitational-wave Observatory. The purpose of LIGO is to detect gravitational waves. Albert Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity. Einstein’s mathematics showed that massive accelerating objects (such as neutron stars or black holes orbiting each other) would disrupt space-time in such a way that ‘waves’ of distorted space would radiate from the source. In the semiconductor industry, I am concerned with a final product on a microscopic, nanometer scale on microprocessor chips. LIGO is at the other far end of the curve dealing with massive object colliding in space.

The problem is that detecting gravitational waves is an extremely difficult task. The waves will cause distortions in space on earth that are shorter than the dimension of an atom’s nucleus. In fact the distortions are on the order of 1/10,000th of the diameter of an atomic nucleus. The detector has to be super sensitive and in a very quiet location. Vacuum technology plays a key role in this experiment.


LIGO Livingston. Courtesy Caltech/MIT/LIGO Laboratory

LIGO consists of two interferometers, each with two 4 km (2.5 mile) long arms arranged in the shape of an “L”. Each chamber encloses 10,000 cubic meters of volume. One interferometer is located in Hanford, Washington and the other in Livingston, Louisiana. The reason for two is that the earth is a very active place with lots of human hustle and bustle. There are earth quakes and storms. So if the detectors both capture the same signal, then that is strong evidence that the signal is a gravitational wave.

When gravitational waves pass through the system, the distance between the end mirrors and the beam splitter lengthen in one arm and at the same time shorten in the other arm in such a way that the light waves from the two arms go in and out of phase with each other. When the light waves are in phase with each other, they add together constructively and produce a bright beam that illuminates the detectors. When they are out of phase, they cancel each other out and there is no signal. Thus, the gravitational waves from a major cosmic event, like the merger of two black holes, will cause the signal to flicker, as seen here

Gravitational waves sent out from a pair of colliding black holes have been converted to sound waves, as heard in this animation. On September 14, 2015, LIGO observed gravitational waves from the merger of two black holes, each about 30 times the mass of our sun. The incredibly powerful event, which released 50 times more energy than all the stars in the observable universe, lasted only fractions of a second.

In the first two runs of the animation, the sound-wave frequencies exactly match the frequencies of the gravitational waves. The second two runs of the animation play the sounds again at higher frequencies that better fit the human hearing range. The animation ends by playing the original frequencies again twice.

As the black holes spiral closer and closer in together, the frequency of the gravitational waves increases. Scientists call these sounds “chirps,” because some events that generate gravitation waves would sound like a bird’s chirp.

Audio Credit: Caltech/MIT/LIGO Lab

The lasers are operated in a vacuum level on the order of 10-9 torr. This ensures that there are no air currents causing distortion of the laser beams either through transmission of sound or thermal energy. Also it lessens the chance of particle movement in the vacuum system.


Spiral welding a section of a vacuum tube. Courtesy Caltech/MIT/LIGO Laboratory

LIGO’s vacuum tubes were constructed of spiral-welded 3 mm thick 304L stainless steel. With its relatively low carbon content, 304L steel is resistant to corrosion, especially at the critical welded seams. The 1.2 m diameter beam tubes were created in 19 to 20 m-long segments, rolled into a tube with a continuous spiral weld. To prevent collapse, LIGO’s tubes are supported with stiffener rings that provide a significant layer of resistance to buckling under the extreme pressure of the atmosphere. The tubes must withstand these stresses for at least 20 years.

Evacuating the chambers took 40 days of constant pumping to evacuate them to their optimal operating pressure. In that time, turbomolecular pumps removed the bulk of the air in the tubes while the tubes themselves were heated to 150-170 degrees C for 30 days to drive out residual gases.

The gases that remain in the system are primarily H2 and water vapor. There are liquid nitrogen cryogenic panels in place to capture the stray water molecule and ion pumps to capture H2 gas. There is so much more technology involved in the LIGO detectors. I encourage you to visit the LIGO website. Although LIGO depends on extreme vacuum engineering, the vacuum technologies involved are explained in Understanding Modern Vacuum Technology.

NOTE: On June 1st, 2017, LIGO made their third detection of a gravitational wave event from the collapse of 32 solar mass black hole and a 19 solar mass black hole forming one large black hole of 49 solar masses. The means that two solar masses of material were transformed into energy by the collision.